HETEROCYCLIC THIOAMIDES PAIRING THROUGH SELECTIVE HYDROGEN BONDING.

E. Gentric^a, J. Lauransan^a, C. Roussel^b and J. Metzger^b.
a)Laboratoire de thermodynamique, Université, 29283 Brest, France.
b)I.P.S.O.I.,Centre Universitaire St Jerome, Rue Poincaré, 13013 Marseille, F.

(Received in UK 25 November 1976; accepted for publication 6 December 1976)

Compared to the number of studies on the selective hydrogen bonding of nucleotide bases¹, no quantitative results have yet been reported for selective hydrogen bonding in much more simple models such as heterocyclic thioamides R_i , S_i .

bonding in much more simple models such as heterocyclic thioamides R_i , $S_{j,2}$. In a study of bifunctional catalyst design, we have already reported their homoassociation constants (${}^{K}R_{i}R_{i}$ and ${}^{K}S_{j}S_{j}$), and their hydrogen bonding tendencies respectively towards DMSO (K_{PDA}) and p-ClC₆H₄OH (K_{PAA}) in CCl₄ by i.r. spectros-copy. The structural changes of X or Y specifically affect the proton donating ability of the N-H proton and the proton accepting ability of the C=S sulphur atom.

Homodimers

Heterodimer

We wish to report that selected pairs of heterocyclic bases, one with a high proton donating ability (large K_{PDA}) and the other with a high proton accepting ability (large K_{PAA}) can be involved in heteroassociated species of larger stability than the homoassociated species of the parent compounds.

Experimental evidence for heteroassociated species: The figure shows the i.r. spectra in CCl₄ (2600-3500 cm⁻¹) of pure 1-Me-tetrahydropyrimidine-2-thione S_1 ($C_S = 1.5 \ 10^{-3}$ M), of pure benzothiazoline-2-thione R_1 ($C_R = 1.5 \ 10^{-3}$ M) and of a mixture 1:1 of R_1 and S_1 ($C_R = C_S = 1.5 \ 10^{-3}$ M). The spectra of R_1 and S_1 exhibit respectively the free N-H absorptions (3409 for R_1 and 3450 for S_1) together with the associated N-H bond (3225 for S_1 and c.a. 3000 for R_1)³. The i.r. spectra of the mixture R_1S_1 shows a decrease of both the two free N-H absorptions, a large increa se in the absorption below 3000 cm⁻¹ and the appearance of an intense absorption at 3260 cm⁻¹. This behaviour is well accounted for by a decrease of both monomeric forms due to the occurence of a new heteroassociated pair R_1S_1 .⁴

In this heteroassociated pair, the absorption at c.a.3000 cm⁻¹ involves a strong hydrogen bond between the two centers of large hydrogen bonding tendencies: the C=S sulphur atom of S_1 ($K_{PAA} = 90 \text{ M}^{-1}$) and the N-H proton of R_1 ($K_{PDA}=2000 \text{ M}^{-1}$) The occurence of a cyclic dimer in the heteroassociated pair instead of a possible linear dimer is clearly shown by the absorption at 3260 cm⁻¹. This high frequency indicates that the hydrogen bond occurs between two centers of low hydrogen bonding tendencies (C=S sulphur atom of R_1 : $K_{PAA} = 20 \text{ M}^{-1}$; N-H of S_1 : $K_{PDA}=18 \text{ M}^{-1}$); furthermore its high intensity indicates that this bond is formed to a large extent. The occurence of such a cyclic dimer can be rationalized by a minimisation of the dipole moment in the heteroassociated pair in CCl₄.

		TABLE			
Compounds	K _{PDA} (DMSO)	к _{раа} (р-сіс ₆ н ₄ он)	^K R _i Ri ^{or K} sjsj	^K R ₁ S _j	^ĸ r₂sj
R1	2000	20	730	-	_
R ₂	3000	25	620	-	-
s ₁	18	90	30	1200	1500
s ₂	400	50	340	1050	1200
s ₃	42	120	100	1200	2000
s ₄	300	245	2250	5400	7500
	·				

The calculated value of the heteroassociation constant according to eq. I^{5} is larger than both the homoassociation constants for $R_{1}R_{1}$ and $S_{1}S_{1}$ pairs. The table reports selected values of heterocyclic thioamides pairing. The chosen thioamides have crossed proton donating and proton accepting abilities; when this crossing is not respected, the heteroassociation constant is found between the two homoassociation constants. Thus, when 2-thiopyridone ($K_{\rm PDA}$ = 450 M⁻¹, $K_{\rm PAA}$ =260 M⁻¹, $K_{\rm RR}$ = 6000 M⁻¹) is mixed with S₃, the heteroassociation constant is 1100 M⁻¹.

In summary, the preliminary results presented here show that heterocyclic thioamides can be involved in base pairing as do the nucleotide bases. Some appli-

cations of this selective pairing in reactivity and in physical extraction are in progress.

References and notes.

- ¹a) "Molecular Associations in Biology", B. Pullman Ed. Academic Press,N.Y.1968.
- b) Y. Kyogoku, B.S. Yu, R.C. Lord and A. Rich, Jerusalem Symp. on Quantum Chem. and Biochemistry, IV, 1972, 223.
- c) V.L. Antonovsky, A.S. Gukovskaja, G.V. Nekrasova, B.I. Sukhorukov and I.I. Tchervin, Biochimica and Biophysica Acta, 1973, 331, 9-20.
- ²a) E. Gentric, J. Lauransan, C. Roussel and J. Metzger, J. Chem. Soc. P II, 1976; 565.
- b) <u>ibid</u>. under press paper 6/1107.

³Association constants $K_{R_iR_i}$, $K_{S_iS_j}$ are extracted as given in 2a.

⁴As an example, the concentrations in the various species at equilibrium, calculated with $K_{P1S1} = 1200 \text{ M}^{-1}$, are:

oncentration	R ₁	^R 1 ^R 1	s ₁	sisi	^R 1 ^S 1
Pure R ₁	7.3 10^{-4}	3.9 10 ⁻⁴	-	-	-
Pure S ₁	-	-	$1.4 \ 10^{-3}$	5.6 10^{-5}	-
$R_1 + S_1$	$5.5 \ 10^{-4}$	2.2 10 ⁻⁴	9.0 10-4	$1.5 \ 10^{-5}$	5.0 10^{-4}

One observes a larger decrease in the dimer concentrations than in the monomer concentrations.

⁵Heteroassociation constants are evaluated from equation I (${}^{K}R_{i}S_{i}$):

cteroas	SUCIALIO	in constants are evaluated		cquation 1 (ⁱⁱ j [']
K _{RiSj} =	$\frac{1}{B_{R_i}B_{S_j}}$	$\frac{(1 - \alpha\beta)^2}{(d_{R_i} - \beta d_{S_j})(d_{S_j} - \alpha d_{R_i})}$	$\left[\begin{array}{c}c^{o}_{R_{i}}-B_{R}\\ \end{array}\right]$	$\frac{\frac{d_{R_i} - \beta d_{S_j}}{1 - \alpha \beta}$	$- A_{R_{i}} \left(\frac{\frac{d_{R_{i}} - \beta d_{S_{j}}}{j}}{1 - \alpha \beta} \right)^{2}$

 A_{R_i} and B_{R_i} are obtained by statistical treatment of the experimental curve $C_{R_i}^{\circ} = f(d)$ according to $C_{R_i}^{\circ} = A_{R_i}d^2 + B_{R_i}d$ in the study of the homoassociation of pure R_i .(see 2a). $K_{R_i}R_i = A_{R_i}/2B_{R_i}^2$, $R_i^{=1/B}R_i$.

 ${}^{d}R_{i}$ and ${}^{d}S_{j}$ are the absorbances at the corresponding free N-H frequencies. ${}^{c}R_{i}$ is the formal concentration in R_{i} . α and β are coefficients to account for the overlapping of the free N-H frequencies. In the given figure, α equals 0.042 and β equals 0.045.

The random errors calculated from statistical analysis (C.A. Bennett and N.L. Franklin, "Statistical Analysis in Chemistry and the Chemical Industry", Wiley, New-York, 1954, p. 228) on coefficients A_{Ri} and B_{Ri} (0.95 confidence level) lead to a calculated error on K_{RiSj} of c.a. 40 %. However, repetition of experiments shows that these errors are largely overestimated (20 %).

All the experiments were performed at 25°C.

C